Assessing the sensitivity and specificity of three different methods for DNA isolation from Borrelia burgdorferi

Zak Haj-Ahmad², Lila Haj-Ahmad³, Won-Sik Kim¹, and Yousef Haj-Ahmad¹,²
¹Norgen Biotek Corp, 3430 Schmon Pkwy, Thorold, ON, L2V 4Y6
²Brock University, 500 Glendale Ave., St. Catharines, ON, L2S 3A1
³McGill University, 3605 Rue de la Montagne, Montréal, QC H3G 2M1

Abstract:
Although Lyme disease has been recently acknowledged as a major health threat to both the United States and Canada, controversy exists regarding its diagnosis and treatment. Current testing protocol in the United States consists of ELISA, Western blotting, and protein work to detect B. burgdorferi (the causative agent of Lyme disease) proteins in blood or urine specimens. Frequently, these tests result in misdiagnoses, including both false positives and false negatives—this is suggestive of insufficient sensitivity and specificity among these protein-based methods. An alternative testing protocol employs PCR diagnostic kits, however these also face problems with sensitivity and specificity. We hypothesize that the isolation of B. burgdorferi from human specimens is the point in the diagnostic procedure that causes the poor results whilst employing the PCR method. The present study aimed to identify the optimal method for isolating B. burgdorferi DNA; thus, our study evaluated diagnostic methods that may ameliorate the existing deficiencies in sensitivity and specificity of Lyme disease testing. B. burgdorferi has several unique properties, such as its dierm (double membrane) structure that renders it neither Gram negative nor Gram positive, and therefore it is likely that isolating its DNA can be impacted by the different isolation methods and lysis conditions employed. Our study compared the current Norgen Biotek Genomic DNA Isolation Kit, another commercially available kit in popular use (Qiagen’s QIAamp DNA Blood Mini Kit), and the alkaline hydrolysis method, which is frequently cited in B. burgdorferi literature. B. burgdorferi DNA was isolated from a bacterial suspension, as well as bacterial suspension spiked in plasma, with a concomitant serial dilution to assess the limit of detection for each method. Results indicate that DNA isolated using Norgen’s method consistently yielded greater quantity and quality of B. burgdorferi genomic DNA at low bacterial concentration; as such, Norgen’s kit presents a highly sensitive method for Lyme disease testing from patient plasma.

Materials & Methods

DNA ISOLATION FROM B. BURGDORFERI SUSPENSION

DNA Isolation:
- Obtained 5 x 10⁸, 2.5 x 10⁹, 1.25 x 10⁹, or 6.25 x 10⁸ cells of B. burgdorferi
- In duplicates, DNA was isolated from each of the four starting concentrations using Norgen’s Bacterial Genomic DNA Isolation Kit (Cat. #14400), Qiagen’s QIAamp DNA Blood Mini Kit, or the alkaline hydrolysis method.

PCR Quantification & Gel Electrophoresis:
- 2 µL of each elution was used in a 20 µL PCR reaction, using Norgen’s Borrelia burgdorferi TaqMan PCR Detection Kit (Cat. #145200)
- 5 µL of each elution was loaded onto a 1.2% agarose DNA gel and run for 30 minutes at 150 V
- 4 µL of Norgen Biotek’s High Ranger Ladder was used

DNA ISOLATION FROM B. BURGDORFERI SUSPENSION SPIKED IN PLASMA

Plasma Collection:
- Whole blood was collected from a healthy donor in EDTA tubes
- Plasma was collected by centrifugation at 600 x g for 5 min, followed by 2000 x g for 10 min

DNA Isolation:
- Obtained 5 x 10⁸, 2.5 x 10⁹, 1.25 x 10⁹, or 6.25 x 10⁸ cells of B. burgdorferi. The cells were pelleted by centrifugation at 14,000 RPM for 1 minute. The bacterial pellet was resuspended in 100 µL of plasma
- In duplicates, DNA was isolated from each of the four starting concentrations using Norgen’s Bacterial Genomic DNA Isolation Kit, Qiagen’s QIAamp DNA Blood Mini Kit, or the alkaline hydrolysis method.

PCR Quantification & Gel Electrophoresis:
- Refer to above conditions

Results & Discussion

Figure 1. Mean cycle threshold values of B. burgdorferi DNA isolated from (a) bacterial suspension alone (pure system), and (b) plasma spiked with bacterial suspension, with standard error.

Norgen’s Bacterial DNA Isolation method produces lower CT values consistently across all cell counts.

Figure 2. Gel electrophoresis of B. burgdorferi DNA isolated from bacterial suspension alone (pure system).

Total DNA isolated from plasma indicate that the Norgen and Qiagen methods are similar in their yield.

The Alkaline Hydrolysis method does not appear to have intact genomic DNA, rather it has smearing effects.

These gels are not indicative of B. burgdorferi DNA however, due to the contaminating human genomic DNA.

Therefore these results must be interpreted in light of PCR data.

Conclusions

Isolation from B. burgdorferi suspension:
- Norgen’s Bacterial Genomic DNA Isolation method resulted in a slightly increased yield of B. burgdorferi DNA when compared to the Qiagen and alkaline hydrolysis methods.

Isolation from B. burgdorferi suspension spiked in plasma:
- Norgen’s Bacterial Genomic DNA Isolation method produced a slightly greater final yield of B. burgdorferi in comparison to the Alkaline Hydrolysis and Qiagen methods.

Take-home message:
- Norgen’s Genomic Bacterial DNA Isolation kit will allow for the detection of small quantities of B. burgdorferi from clinical samples.

Norgen’s increased isolation sensitivity at lower concentration of B. burgdorferi will allow for an appropriate diagnosis to be made in patients with Lyme Disease.

References