Total RNA Purification Kits
For research use only and NOT intended for in vitro diagnostics.
CE-IVDR marked diagnostic version available here
For research use only and NOT intended for in vitro diagnostics.
CE-IVDR marked diagnostic version available here
Register today to receive an exclusive 15% off* on your first order.
These kits are suitable for the isolation of total RNA from a range of samples including cells, bacteria, yeast, virus and bodily fluids including plasma/serum, blood, saliva, CSF and more. Extract high quality and purity RNA with excellent RIN values and A260/A280 suitable for downstream applications including qRT-PCR, RT-PCR, microarrays, NGS and more. These kits purify all sizes of RNA from large mRNA, lncRNA down to microRNA (miRNA) in the same fraction without the requirement of phenol. Isolate all RNA sequences at an equal rate irrespective of size. Moreover, when the RNA sequences are small (e.g. miRNA), the column binds small RNAs regardless of their GC content.
Total RNA Purification 96-Well Kit (High Throughput and High Throughput Deep Well)
This 96-well kit provides a rapid method for the high-throughput isolation and purification of total RNA in 30 minutes using vacuum manifold, plate centrifuge, or liquid handlers with vacuum capabilities. Total RNA can be isolated from a broad range of sample sources including cultured cells, tissues, blood, serum, plasma, bacteria, yeast, fungi, and viruses.
Isolate RNA after Purifying EVs and Exosomes
Ultracentrifugation, Exoquick, Filtration
Cat. # | Name | Elution Volume | Plasma/Serum | Urine | Cell-Culture Media |
---|---|---|---|---|---|
55000 | Plasma/Serum RNA Purification Mini Kit | 10 - 25 µL | 50 µL - 1 mL | 250 µL - 1 mL | 5 - 10 mL |
35300 | Total RNA Purification Micro Kit | 20 - 50 µL | 1 - 4 mL | 2 - 10 mL | 10 - 20 mL |
17200 | Total RNA Purification Kit | 50 - 100 µL | 4 - 10 mL | 11 - 30 mL | 20 - 35 mL |
Kit Specifications
|
|
Maximum Binding Capacity
|
Up to 50 μg RNA
|
Maximum Loading Volume
|
650 μL
|
Size of RNA Purified
|
All sizes, including small RNA (< 200 nt)
|
Maximum Amount of Starting Material
|
|
Animal Cells | 3 x 106 cells |
Animal Tissues | 10 mg (for most tissues*) |
Blood | 100 μL |
Plasma/Serum | 200 μL |
Bacteria | 1 x 109 cells |
Yeast |
1 x 108 cells
|
Fungi |
50 mg
|
Plant Tissues |
50 mg
|
Time to Complete 10 Purifications |
20 minutes
|
Average Yield | |
HeLa Cells (1 x 106 cells) | 15 μg |
E. coli (1 x 109 cells) | 50 μg |
* for isolating total RNA from larger amounts of tissue, please use Norgen's Animal Tissue RNA Purification Kit (Cat# 25700)
Storage Conditions and Product Stability
All solutions should be kept tightly sealed and stored at room temperature. These kits are stable for 2 years after the date of shipment.
Component | Cat. 17200 (50 preps) | Cat. 37500 (100 preps) | Cat. 17250 (250 preps) | Cat. 17270 (500 preps) | Cat. 24300 (192 preps) | Cat. 24370 (576 preps) | Cat. 24350 (192 preps) | Cat. 24380 (576 preps) |
---|---|---|---|---|---|---|---|---|
Buffer RL | 40 mL | 2 x 40 mL | 175 mL | 350 mL | 2 x 40 mL | 350 mL | 2 x 40 mL | 350 mL |
Wash Solution A | 38 mL | 2 x 38 mL | 148 mL | 1 x 148 mL 1 x 74 mL |
2 x 38 mL | 1 x 74 mL 1 x 148 mL |
2 x 38 mL | 1 x 74 mL 1 x 148 mL |
Elution Solution A | 6 mL | 2 x 6 mL | 30 mL | 60 mL | 2 x 20 mL | 60 mL | 2 x 20 mL | 60 mL |
Mini Spin Columns | 50 | 100 | 250 | 500 | - | - | - | - |
96-Well Isolation Plate | - | - | - | - | 2 | 6 | - | - |
96-Well Isolation Plate (Deep Well) | - | - | - | - | - | - | 2 | 6 |
Adhesive Tape | - | - | - | - | 4 | 12 | 4 | 12 |
Collection Tubes | 50 | 100 | 250 | 500 | - | - | ||
96-Well Collection Plate | - | - | - | - | 2 | 6 | - | - |
96-Well Collection Plate (Deep Well) | - | - | - | - | - | - | 2 | 6 |
Elution Tubes (1.7 mL) | 50 | 100 | 250 | 500 | - | - | ||
96-Well Elution Plate | - | - | - | - | 2 | 6 | - | - |
96-Well Elution Plate (Deep Well) | - | - | - | - | - | - | 2 | 6 |
Product Insert | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Poor RNA recovery could be due to one or more of the following:
Column/well clogging can result from one or combination of the following factors:
RNA can be degraded due to the following factors:
If the RNA does not perform well in downstream applications, it may be due to one or more of the following:
The contamination with genomic DNA may be due to large amount of starting material used. Perform RNase-free DNase I digestion on the RNA sample after elution to remove genomic DNA contamination. It is recommended that Norgen’s RNase-Free DNase I Kit (Product # 25710) be used for this step.
Yes, the Total RNA purification kits can be used to purify RNA from samples like buffy coats and isolated PBMCs. For blood leukocyte samples, you can use a specialized product - Leukocyte RNA purification kit.
Yes, Total RNA purification kits can be used with samples stored in RNA protective agents like RNAlater. Norgen Biotek also provides a similar RNA preserve solution (Cat. 17260).
Yes, you can use Total RNA purification kits to purify RNA from insect samples. Please contact our Tech support team at support@norgenbiotek.com and ask for reference publications.
Yes, lysates prepared in buffer RL can be frozen at -80°C, and the remaining protocol can be performed at a later date.
Yes, you can use Norgen's Total RNA purification kits with the aqueous phase from samples prepared in TRIzol. Please contact our Tech Support team at support@norgenbiotek.com if you have any questions regarding the protocol.
Yes, Norgen Total RNA purification kits are compatible with tissue samples stored in OCT compound. Please contact our Tech Support team at support@norgenbiotek.com and ask for reference publications.
Title | Characterization of a novel chaperone/usher fimbrial operon present on KpG1-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumonia |
Citation | BioMed Central 2012. |
Authors | Jon van Aartsen, Steen Stahlhut, Ewan Harrison, Marialuisa Crosatti, Hong-Yu Ou, Karen Krogfelt, Carsten Struve, Kumar Rajakumar |
Title | Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the PcG/TrxG complexes distinctly from functional adult HSCs |
Citation | Stem Cells and Development 2012. |
Authors | Angelique Schnerch, Jung Bok Lee, Monica Graham, Borhane Guezguez, Mickie Bhatia |
Title | Proliferation and recapitulation of developmental patterning associated with regulative regeneration of the spinal cord neural tube |
Citation | Developmental Biology 2012. |
Authors | Gabor Halasi, Anne Mette Soviknes, Olafur Sigurjonsson, Joel Glover |
Title | Combinatorial Action of miRNAs Regulates Transcriptional and Post-Transcriptional Gene Silencing following in vivo PNS Injury |
Citation | Open Access 2012. |
Authors | Tadepalli Adilakshmi, Ida Sudol, Nikos Tapinos |
Title | Root colonisation of Pseudomonas aeruginosa strain UPMP3 and induction of defence-related genes in oil palm (Elaeis guineensis). |
Citation | Cell Research 2012. |
Authors | Bueno C, et al. |
Title | Midkine Promotes Proliferation of Primordial Germ Cells by Inhibiting the Expression of the Deleted in Azoospermia-Like Gene |
Citation | Endocrinology 2012. |
Authors | Wei Shen, Bong-Wook Parkk, Derek Toms, Julang Li |
Title | Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress |
Citation | Mol Biol Rep 2012. |
Authors | Jing Zhou, Mingying Liu, Jing Jiang, Guirong Qiao, Sheng Lin, Haiying Li, Lihua Xie, Renying Zhuo |
Title | Detection of diverse aquatic microbes in blood and organs of drowning victime: First metagenomic approach using high-throughput 454-pyrosequencing |
Citation | Forensic Sciecne Journal 2012. |
Authors | Eiji Kakizaki, Yoshitoshi Ogura, Shuji Kozawa, Sho Nishida, Taketo Uchiyama, Tetsuya Hayashi, Nobuhiro Yukawa |
Title | MicroRNA Profiling using uParaflo Microfluidic Array Technology |
Citation | Methods in Molecular Biology 2012. |
Authors | Xiaochuan Zhou, Qi Zhu, Christoph Eicken, Nijing Sheng, Xiaolin Zhang, Litao Yang, Xiaolian Gao |
Title | Genetic basis of Hidden Phenotypic Variation Revealed by Increased Translational Readthrough in Yeast |
Citation | Plos Genetics 2012. |
Authors | Noorossadat Torabi, Leonid Kruglyak |