What's in the Tap Water
Although water that flows into most laboratories is safe for human consumption, it needs to be further purified for sensitive laboratory use. Water provided from most municipal water treatment systems still contains a wide range of natural minerals (eg. calcium, magnesium, sulphate etc.), dissolved organic matter, and toxic contaminants. Anthropogenic contamination of source water can lead to tap water that contains heavy metals (eg. lead, arsenic), inorganic chemicals (e.g. nitrates, and nitrites), organic chemicals (e.g., pesticides, industrial solvents), pharmaceuticals, and personal care products. Recent research also shows that water supplies all over the world, in both industrialized and rural settings, are contaminated with microplastics, with US tap water averaging 9.24 particles/L1. Moreover, the water treatment process itself can also produce contaminants such as chloroform, which can result as a disinfection by-product.
In addition to natural and industrialized chemicals, municipal water also contains microbial contamination. Water treatment systems do not completely remove all microbes, and trace amounts of different bacteria, fungi, or viruses can remain. Furthermore, even if microbial cells have been destroyed, their cell contents are released into the water upon lysis. Contaminants of microbial origin can include enzymes such as nucleases as well as endotoxins.
What are Nucleases
Nucleases are enzymes that degrade nucleic acids such as DNA and RNA by cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases belong to the hydrolase class of enzymes and are usually specific in action. Ribonucleases only act on ribonucleic acids (RNA), and deoxyribonucleases act only upon deoxyribonucleic acids (DNA). They can be further classified based on their target molecules and mode of action. Exonucleases digest nucleic acids from the ends, while endonucleases act on regions in the middle of target molecules
In living organisms these enzymes are important, as they are involved in the DNA repair process, proofreading during replication, and the removal of Okazaki fragment RNA primers from replication, among other processes. With respect to human health, mutations in these enzymes can have deleterious consequences, such as genetic instability or immunodeficiency. In a laboratory setting, the properties of these enzymes have been harnessed by researchers to perform genetic engineering such as CRISPR-Cas gene editing.
However, in most laboratory settings the presence of background nucleases is undesirable. These enzymes are extremely active, and a small amount of nucleases can produce a lot of nucleic acid degradation. It is therefore particularly important to keep all laboratory reagents and consumables nuclease-free.
What are Endotoxins
Endotoxins are a component of the outer membrane of Gram-negative bacteria. Gram-negative bacteria differ from most other cells as they have two cellular membranes. An inner membrane surrounds the cytoplasm, as in most cells, however, they also have an outer membrane that protects the cell from the external environment. This outer membrane contains a complex molecule called lipopolysaccharides (LPS). If introduced into higher organisms, LPS causes a wide range of toxic activities when present, even in small amounts (picogrammes). LPS is also considered a pyrogen, or a fever-causing agent. The term pyrogen stems from “pyro-” of the greek root “fire”, and “gen” from the greek “-genes”, meaning born of or produced by. Endotoxins are naturally found in the environment (water, air) populated by Gram-negative bacteria.
The Impact of Water Quality on Biological Research
Water that is free of chemical impurities, microorganisms, endotoxins, and enzymes such as nucleases and proteases is of utmost importance to ensure high quality research results.
- PCR: Contaminated water can introduce foreign DNA and/or nucleases during the amplification process, leading to inaccurate results. In addition, chemical impurities can inhibit the enzymatic reactions. Ultrapure nuclease-free water ensures that the DNA template remains pure from start to finish.
- RNA: For RNA isolation, cDNA synthesis, or RNA sequencing, it is crucial to maintain RNA integrity. Using RNase-free water when working with RNA prevents degradation and preserves the quality of the samples.
- Sequencing: Next-generation sequencing demands high-quality DNA templates. Nuclease-free water guarantees that the DNA sequences remain intact, reducing the risk of sequencing errors.
- Molecular Cloning: In the construction of recombinant DNA molecules, a wide variety of impurities can negatively impact the process. Ultrapure nuclease-free water ensures the integrity of the DNA fragments and efficiency of the cloning.
- Cell Culture: Ultrapure nuclease-free water is also vital for the preparation of cell culture media and buffers. Heavy metals such as lead, mercury, nickel, zinc, chromium, and cadmium are toxic to various cells. Endotoxins can inhibit cell growth and nucleases can compromise the integrity of cell lines and experimental results.
Water Quality Standards
Different regulatory agencies, such as ASTM International, define the purity of water based on measurable characteristics. Conductivity (measured in µS/cm), is an electrical measurement based on the flow of charged ions in the water. The conductivity indicates the concentration of dissolved ions in the water, and resistivity is the inverse of this. Type I water (ultrapure) has the lowest conductivity (highest resistivity), and Type IV water (semi-pure) has the highest conductivity (lowest resistivity). As there are also organic impurities that are not charged, Type I water is further defined by its total organic compounds (TOC). In addition to these 4 water types based on their chemical purity, there are three grade specifications based on contaminants of microbiological origin. Biological research laboratories have necessitated further classification based on the presence of specific enzymes such as nucleases and proteases.
Water Purification Methods
Water purification systems are usually a combination of physical, chemical, and electrical processes that each remove certain impurities. These processes are used in combination to produce water of a desired quality.
Pre-treatment
Much of the water treatment process relies on sensitive membrane technologies, resins, and equipment that can be damaged by certain water impurities, therefore water should be pre-treated to protect equipment. Dissolved ions such as calcium and magnesium can result in scale build up on equipment, and chlorine gas can destroy membranes. Many pre-treatment methods involve the use of polyphosphates, which are a type of chemical that sequesters many minerals and metals (iron, manganese, calcium, magnesium, etc.) by forming soluble complexes. Another pre-treatment method is the use of activated carbon. Activated carbon is a material with a high surface area that binds a wide variety of dissolved gases, chemicals, and bacterial impurities through physical adsorption kinetics.
Nuclease-Free Water
For all molecular biology applications requiring nuclease-free water including PCR, RT-PCR and real-time PCR.
Learn More