What is Multiple Myeloma?
Multiple myeloma (MM) is a cancer of the blood that develops in the plasma cells in bone marrow. Plasma cells assist the immune system by producing antibody proteins as a response to bacterial infections. When cancer grows in these cells it causes abnormal plasma cell growth and leads to the formation of malignant tumours throughout the bone marrow.1 Symptoms of MM generally do not develop until the cancer has advanced and spread.2 It is also a heterogeneous disease, which means there is no one-size-fits-all method of treatment. This implies that personalized risk stratification is essential for disease treatment and management.3
The American Cancer Society estimates that about 34,470 new cases of multiple myeloma will be diagnosed in 2022—19,100 in men and 15,370 in women.4 Prognostic and predictive biomarkers for multiple myeloma are heavily being investigated as a way to monitor cancer treatment progression and as a way to categorize people that are more likely to respond to a treatment.
The Search for Multi-Panel Biomarkers and Risk Stratification of MM
Researchers within the field of oncology know that biomarker discovery is a world where precision and specificity is essential. For a successful prognostic/diagnostic test to be brought to the market, it needs to have a high level of specificity to the cancer that it is screening for. However, there is increasing evidence that various stages of cancer progression will exhibit different biomarkers. This means that one biomarker is not a strong enough tool for the molecular characterization of cancer signatures. As a result, multi-biomarker panel signatures are increasingly being studied for risk-stratification to predict patient survival and as predictive markers for treatment response. A 2019 literature review by Lê et al. found that the use of large panels of biomarkers are less likely to yield unreliable results owing to the substantial heterogeneity among cancers.3
All Eyes on Exosomes - A Cargo of Information
Exosomes continue to predominate the nano world as a treasure chest of information, particularly when it comes to disease diagnostics. They are small (40 nm - 150 nm) membrane-bound vesicles produced by all living cells and can be found in all body fluids, including but not limited to plasma, urine, saliva, breast milk, amniotic fluids and others.
Among their numerous functions, they are involved in conveying cellular information to distant cells and tissues within the body, where they can alter function and/or physiology. Exosomes act as natural carriers of microRNA and can also contain distinct subsets of microRNAs which depend upon the tumour cell type from which they are secreted (tumour-specific signatures). A recent review of next-generation biomarkers in MM presented promising research on how circulatory exosomal miRNAs such as let-7b and miR-18a possess a prognostic role in MM by predicting the progression of the disease.5
Tumour-Specific Content in Exosomes
According to a recent 2021 study published in Frontiers in Medicine, Rezaei et al. determined that the average size of tumor-derived exosomes to be 95 nm.6 They performed analyses on tumor-derived exosomes (TEXs) using a Zetasizer machine, which performs size measurement analysis using a process called Dynamic Light Scattering and enables measurements of particles and molecules on the nanoscale.7 Other sources in the literature describe these exosomes as measuring less than 50nm in diameter.8 Confirming the presence and size of these particles is but one part of the puzzle to exploring their role and mechanism within a disease state. The challenge exists in its isolation and purification for further downstream analysis.
Exosome Purification - Is There a Better Way?
Although ultracentrifugation (UC) is the most widely used method of EV purification, there are critical limitations reported among literature, some of which include co-isolation of non-exosomal contaminants, potential damage of exosomes and low-throughput of samples.9 A comparison of traditional and novel methods for the separation of exosomes from human samples found that ultracentrifugation may result in a large number of exosomes being lost at the risk of reducing the yield.10
Promising research published in Frontiers of Oncology (2020) identifies how “circulating exosomal miRNAs isolated from the serum of 156 patients identified 22 miRNAs expressed at a significantly lower level in MM patients compared to healthy individuals... among those, let-7b and miR18a were significantly associated with both progression-free survival and overall survival.”11 This exciting work adds to the notion that exosomes may be a useful marker of disease progression for multiple myeloma.
Resin-Based Isolation of Small Plasma/Serum EVs
In 2021, Australian researchers investigated the biological activity and characterization of plasma-derived extracellular vesicles (psEV) from human multiple myeloma cell lines (HMCL) in order to explore their potential as oncogenic biomarkers in myeloma disease.1
The isolation of psEV from blood remains an arduous task due to the presence of highly abundant proteins and other contaminants which can co-isolate and impair the sample. Since the recovery of psEV is highly dependant on the method of isolation, the scientists decided to compare the performance of three commercially available exosome purification kits and develop a method to study the biological mechanisms of psEV within the context of MM.1
NORBLOG
Want to hear more from Norgen?
Join over 10,000 scientists, bioinformaticians, and researchers who receive our exclusive deals, industry updates, and more, directly to their inbox.
For a limited time, subscribe and SAVE 10% on your next purchase!
SIGN UP